翻訳と辞書
Words near each other
・ Kepler (band)
・ Kepler (disambiguation)
・ Kepler (institution)
・ Kepler (lunar crater)
・ Kepler (Martian crater)
・ Kepler (microarchitecture)
・ Kepler (name)
・ Kepler (novel)
・ Kepler (opera)
・ Kepler (software)
・ Kepler (spacecraft)
・ Kepler Bradley
・ Kepler Cascades
・ Kepler Challenge
・ Kepler College
Kepler conjecture
・ Kepler Engelbrecht
・ Kepler Follow-up Program
・ Kepler Input Catalog
・ Kepler Kessel
・ Kepler Lake
・ Kepler Launch Site
・ Kepler Mire
・ Kepler Museum
・ Kepler object of interest
・ Kepler orbit
・ Kepler Orellana
・ Kepler photometer
・ Kepler problem
・ Kepler scientific workflow system


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Kepler conjecture : ウィキペディア英語版
Kepler conjecture
The Kepler conjecture, named after the 17th-century mathematician and astronomer Johannes Kepler, is a mathematical conjecture about sphere packing in three-dimensional Euclidean space. It says that no arrangement of equally sized spheres filling space has a greater average density than that of the cubic close packing (face-centered cubic) and hexagonal close packing arrangements. The density of these arrangements is around 74.04%.
In 1998 Thomas Hales, following an approach suggested by , announced that he had a proof of the Kepler conjecture. Hales' proof is a proof by exhaustion involving the checking of many individual cases using complex computer calculations. Referees have said that they are "99% certain" of the correctness of Hales' proof, so the Kepler conjecture is now very close to being accepted as a theorem. In 2014, the Flyspeck project team, headed by Hales, announced the completion of a formal proof of the Kepler conjecture using a combination of the Isabelle and HOL Light proof assistants.
==Background==

Imagine filling a large container with small equal-sized spheres. The density of the arrangement is equal to the collective volume of the spheres divided by the volume of the container. To maximize the number of spheres in the container means to create an arrangement with the highest possible density, so that the spheres are packed together as closely as possible.
Experiment shows that dropping the spheres in randomly will achieve a density of around 65%. However, a higher density can be achieved by carefully arranging the spheres as follows. Start with a layer of spheres in a hexagonal lattice, then put the next layer of spheres in the lowest points you can find above the first layer, and so on. At each step there are two choices of where to put the next layer, so this natural method of stacking the spheres creates an uncountably infinite number of equally dense packings, the best known of which are called cubic close packing and hexagonal close packing. Each of these arrangements has an average density of
:\frac{3\sqrt{2}} = 0.740480489\ldots
The Kepler conjecture says that this is the best that can be done—no other arrangement of spheres has a higher average density.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Kepler conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.